Rational Computations of the Topological K-Theory of Classifying Spaces of Discrete Groups
نویسنده
چکیده
We compute rationally the topological (complex) K-theory of the classifying space BG of a discrete group provided that G has a cocompact G-CW -model for its classifying space for proper G-actions. For instance word-hyperbolic groups and cocompact discrete subgroups of connected Lie groups satisfy this assumption. The answer is given in terms of the group cohomology of G and of the centralizers of finite cyclic subgroups of prime power order. We also analyze the multiplicative structure.
منابع مشابه
On Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملDeformations of Whitehead Products, Symplectomorphism Groups, and Gromov–Witten Invariants
homotopy groups π∗(Xλ)⊗Q for a family of topological spaces, once we know enough about their additive structure. This allows us to interpret the condition of realizing as an Ak map a multiple of a map f : S1 −→ G between two topological groups in terms of the existence of a rational Whitehead product of order k. Our main example will be when the Xλ are classifying spaces of symplectomorphism gr...
متن کاملTopological K-(co-)homology of Classifying Spaces of Discrete Groups
Let G be a discrete group. We give methods to compute for a generalized (co-)homology theory its values on the Borel construction EG×G X of a proper G-CW -complex X satisfying certain finiteness conditions. In particular we give formulas computing the topological K-(co)homology K∗(BG) and K(BG) up to finite abelian torsion groups. They apply for instance to arithmetic groups, word hyperbolic gr...
متن کاملHomotopy Theory of Lie groups and their Classifying Spaces
1. Lie groups, homomorphisms and linear representations. Irreducible representations. 2. Maximal tori in compact Lie groups. 3. Characters of representations. Ring of virtual characters. The Weyl theorem. 4. Actions of Lie groups. Homogeneous spaces (orbits) and equivariant maps. 5. Classifying spaces of topological groups and maps induced by homomorphisms. 6. Homotopy classification of maps be...
متن کاملA ug 1 99 8 Spaces of maps into classifying spaces for equivariant crossed complexes , II : The general topological group case
Spaces of maps into classifying spaces for equivariant crossed complexes, II: The general topological group case. Abstract The results of a previous paper [3] on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for cross...
متن کامل